| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Автомат плавного включения и выключения лампы накаливания Главная -> Статьи -> Бытовая электроника -> Автомат плавного включения и выключения лампы накаливания
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Устройство разрабатывалось для управления лампой накаливания, предназначенной для освещения лестничной площадки. Лампа запитана от электрощита, в котором расположены квартирные электросчётчики. Провод питания проложен в стене и не имеет выключателя, поэтому, лампа часто перегорала. Широко распространенный народный способ - включение кремниевого диода последовательно с лампой, полностью не решил проблемы: лампа перегорала реже, но добавилось неприятное мерцание. Проблему могло бы решить использование энергосберегающей лампы с выключателем, но подобные лампы по приемлемой цене продаются еще не везде и совсем неудобно искать выключатель в темноте… Предлагаемое устройство автоматически включает освещение при появлении человека в зоне действия датчика, причем обеспечивается плавное нарастание яркости. В качестве датчика применен готовый пироэлектрический датчик движения от систем сигнализации, смотри ФОТО 1 – ФОТО 4. ФОТО 1 ФОТО 2 ФОТО 3
и состоит из следующих функциональных узлов:
Таблица 1
В таблице даны обозначения: 0 - напряжение с уровнем лог. 0; Об используемых деталях. Все резисторы типа МЛТ-0,125, кроме резистора R12, его тип МЛТ-2. Подстроечный резистор RP1 любого типа. Вместе с резистором R11 он образует расчётный делитель напряжения, поэтому его номинал не рекомендуется уменьшать или увеличивать. При уменьшении сопротивления напряжение, снимаемое с движка этого резистора (или плюсового вывода конденсатора С9) может не достигнуть уровня, при котором яркость лампы EL1 будет четко доходить до минимального значения. Увеличение же сопротивления чревато превышением допустимого напряжения, подаваемого на входы элементов DD1.2 и DD1.4 и выходом из строя микросхемы DD1. Керамические конденсаторы С1, С4, С5, и С7 могут быть любого типа и с рабочим напряжением 20-30 вольт, а вот конденсатор С8 можно использовать на напряжение не ниже 400 вольт или импортный на котором имеется маркировка «250VAC», т.е. для работы в сети переменного тока. Потребляемый от сети устройством ток (при закрытом симисторе VS1) определяется ёмкостью этого конденсатора. Ток, замеренный при ёмкости 470nF (на рисунке 1 указана точка разрыва провода, куда подключался прибор в режиме измерения переменного тока и обозначенная как «~34mA») равен 34mA. При уменьшении (попытке снизить потребляемый ток) этой ёмкости до 330nF в работе устройства начинались сбои – не хватало напряжения питания для пиродатчика. В ручном режиме (без датчика PIR1) ток потребления уменьшится на величину тока датчика, поэтому имеет смысл попробовать уменьшить ёмкость конденсатора C8 до минимальной, при которой сохраняется работа устройства. Хотя паспортное напряжение питания микросхемы К145АП2 – 15 вольт, она прекрасно работает и при 12-ти вольтах, а так как питание применённого датчика тоже 12 вольт, то в параметрическом стабилизаторе VD7-C3 используется стабилитрон с напряжением пробоя 12 вольт и может быть любого типа, (даже составленный из нескольких, например два КС162А) лишь бы напряжение стабилизации не выходило за пределы 12-13 вольт. Электролитические конденсаторы можно использовать любые импортные, в виду их надёжности и небольшого размера, с напряжением не ниже, указанного на схеме. Диоды VD1 - VD3, VD5, VD6, VD8 использованы типа КД521 с любым буквенным индексом и могут быть заменены на любые кремниевые миниатюрные, например КД102. Диод VD4 используется типа КД209А и выбран исключительно исходя из большого запаса по току и обратному напряжению. Светодиод HL1 применён импортный из серии «сверхяркие» и может быть любого цвета, обеспечивающий приемлемую яркость при токе 1-2mA. Микросхема DD1 типа К561ТЛ1 – четыре триггера Шмитта с функцией «И-НЕ». Использование триггеров Шмитта объясняется тем, что процессы изменения напряжений в устройстве протекают относительно медленно, а для четкой, без сбоев, работы устройства нужны крутые фронты управляющих сигналов. Работа в устройстве микросхемы типа К561ЛА7 не проверялась. На рисунке 1 рядом с датчиком PIR1 показана точка разрыва провода питания +12V. В этой точке был замерен постоянный ток, потребляемый датчиком, причём, над чертой (9mA-откл, т.е. датчик не сработан) когда в зоне чувствительности нет человека и внутреннее реле запитано, под чертой (7,5mA-вкл, т.е. датчик сработал) когда в зоне датчика есть движение живого объекта и обмотка внутреннего реле обесточена. Естественно, эти токи разные у разных датчиков и здесь они показаны только для представления порядка величины тока. Все замеры напряжений и логических уровней производились относительно общего минусового провода схемы, на рисунке 1 указанного как «-12Vобщ». При изготовлении, настройке и эксплуатации устройства следует соблюдать осторожность и не забывать, что схема устройства не имеет гальванической развязки от сети ~220 вольт. ФОТО 5
Устройство может быть размещено в адаптере в виде сетевой вилки от не исправных китайского блока питания или радиотелефона, на корпусе которого размещают розетку для лампы и разъем для подключения датчика. В изготовленном устройстве датчик соединяется со схемой посредством витого четырёхжильного микротелефонного провода, вставляемого в телефонные разъёмы, закрепленные на корпусах датчика и самого устройства, смотри ФОТО 5 и ФОТО 6. Для замены настенного выключателя потолочной лампы это устройство не подходит, так как нужен третий провод.
Лампа постоянно горела и не выключалась. Решение, лежащее на поверхности – заменить пробитый симистор. После замены лампа перестала гореть, но и включаться не хотела. Стало понятно, что схема управления также вышла из строя. На плате выключателя установлена микросхема U2100B. Найденный в интернете даташит показал, что микросхема U2100B – это таймер для сетевых (~220В) нагрузок, под управлением которого могут работать реле (см. ФОТО 8) и симистор (см. ФОТО 9). ФОТО 9 На ФОТО 10 показана структура микросхемы-таймера. ФОТО 10 Видно, что внутри микросхемы сформировано триггерное окно (Trigger window), образованное двумя компараторами напряжения, инверсный и неинверсный входы которых объединены (вывод 6). На вторые входы компараторов поданы опорные напряжения 0,5VRef=0,5x5V=2,5V и 0,6VRef=0,6x5V=3,0V. Таким образом, напряжение окна равно 3,0V-2,5V=0,5V. С вывода 8 (-VRef) снимается напряжение 5V и сглаживается конденсатором С2. Это напряжение используется для питания схемы пироэлектрического датчика. На вывод 6 подаётся выходной сигнал от схемы датчика. Схема самого датчика расположена отдельно от платы выключателя в корпусе, имеющем линзу Френеля и установленном на передней панели выключателя. Предусмотрено небольшое изменение положения датчика по горизонтали путём его поворота. Внешний вид датчика в корпусе показан на ФОТО 11, а вид на плату с ЧИП элементами - на ФОТО 12. ФОТО 11
От платы датчика отходят три жёлтых провода: плюс питания, минус питания и сигнальный. Плата крепится к корпусу с помощью одного винтика как показано на ФОТО 13. ФОТО 13 После подключения схемы датчика к отдельному источнику питания +5В, датчик оказался в рабочем состоянии. Теперь осталось посмотреть, что происходит на выходе схемы датчика. На РИСУНКЕ 1 показана эпюра выходного напряжения, снятая осциллографом. В исходном состоянии, когда в зоне датчика нет перемещения инфракрасного излучения, т.е. живого объекта (именно перемещения – пироэлектрические датчики реагируют на изменение тепловой обстановки только в динамическом режиме!), на выходе присутствует некий средний уровень напряжения +2,1В. Этот участок на графике обозначен как 0 – t1. При медленном приближении руки к датчику, выходное напряжение стало плавно уменьшаться (участок t1 – t2). Когда движение было остановлено, выходное напряжение вернулось к исходному уровню +2,1В. При быстром приближении руки выходное напряжение резко снизилось до нулевого уровня (участок t3 – t4), а затем, вновь вернулось к исходному уровню +2,1В. Такая же картинка наблюдалась при удалении руки от датчика, только выходное напряжение теперь увеличивалось. Для плавного движения показан участок t5 – t6, а для быстрого – участок t7 - t8. Для отслеживания уровня выходного напряжения датчика как вверх, так и вниз и предназначено триггерное окно в микросхеме U2100B. Выходное напряжение схемы датчика, как указывалось выше, в режиме покоя равно +2,1В и, казалось бы, не входит в напряжение окна, ограниченное сверху 3,0 вольтами, а снизу 2,5 вольтами. Но это напряжение (+2,1В) замерено относительно минусового провода питания. В схеме выключателя общим является плюсовой провод, поэтому относительно плюса напряжение на выходе схемы датчика будет равно (по модулю) 5V-2,1V=2,9V, которое как раз и укладывается в указанные рамки окна. Для использования датчика в радиолюбительских цифровых конструкциях его выходное напряжение необходимо преобразовать, т.е. привести к дискретному виду. Если отслеживать изменение уровня только вверх или только вниз, что легко реализовать без всяких ухищрений, то чувствительность датчика будет снижена в два раза. Можно воспользоваться схемой дискриминатора, построенного на операционных усилителях или компараторах. А если нужно сверхмалое потребление тока, тогда придётся реализовать схему на специализированных микромощных радиоэлементах. Но можно построить схему преобразователя сигнала на обычных транзисторах, которые в закромах радиолюбителя всегда есть. На РИСУНКЕ 2 показана такая схема. Это не что иное, как измерительный мост. В исходном состоянии потенциалы баз и эмиттеров транзисторов VT1 и VT2 равны, значит, эти транзисторы закрыты и, следовательно, мост уравновешен. Транзистор VT3 закрыт положительным смещением с резистора R3, а транзистор VT4 закрыт отрицательным смещением с резистора R4. С резистора R9 снимается практически напряжение питания (уровень лог.1). При снижении выходного напряжения датчика транзистор VT2 открывается, подавая положительный потенциал с R5 на базу VT4, который также открывается. С выхода преобразователя снимается напряжение с низким уровнем (лог.0). При увеличении выходного напряжения датчика открывается транзистор VT1. На базу VT3 с резистора R7 поступает низкий уровень напряжения. Транзистор VT3 открывается и через R8 на базу VT4 поступает положительный потенциал. Транзистор VT4 открывается и с его коллектора опять снимается низкий уровень. Таким образом, схема отслеживает изменения выходного напряжения датчика - как вверх, так и вниз. Зона нечувствительности составляет порядка 1,2 вольт (0,6 + 0,6 вольт) и обусловлена падением напряжения на переходах Б-Э транзисторов VT1 и VT2. Чтобы её скомпенсировать установлен подстроечный резистор R6. При увеличении его сопротивления, потенциалы эмиттеров VT1 и VT2 начинают принимать противоположные знаки, следовательно, чувствительность преобразователя увеличивается. Если необходимо, чтобы в исходном состоянии на выходе преобразователя было низкое напряжение (уровень лог.0), то в выходном каскаде изменяют включение транзисторов VT3 и VT4, как показано на РИСУНКЕ 3. Замеренный ток потребления датчиком при питании напряжением 5В равен 1-ому миллиамперу. Малое потребление тока датчиком и схемой преобразователя позволяет их использовать в конструкциях с бестрансформаторным питанием. Например, устройство, рассмотренное на рисунке 1 в первой части статьи, где использовался пироэлектрический датчик от сигнализационной системы, не может заменить стенной выключатель в квартире из-за включения схемы параллельно лампе накаливания. С данным преобразователем и датчиком появляется возможность такой замены. Эксперимент показан на ФОТО 14. ФОТО 14 Пример схемы включения рассмотренного преобразователя совместно с микросхемой К145АП2 приведён на РИСУНКЕ 4. В схему добавлен стабилизатор DA2, формирующий питание датчика и преобразователя. Транзистор VT5 инвертирует сигнал и согласует логические уровни напряжений на выходе преобразователя и на входе схемы – формирователя управляющих сигналов DD1. Так как теперь вся схема включена параллельно симистору, она может заменить собой покупные пироэлектрические выключатели. В отличие от покупных, в которых лампа включается и выключается обычным образом, в варианте на микросхеме К145АП2 включение и выключение лампы плавное. Балластный конденсатор С8, возможно, придётся подобрать по минимальному току потребления устройством, при котором не будет нарушаться рабочий режим. В заключении можно отметить, что малое потребление мощности датчиком и преобразователем даёт возможность применять их в других радиолюбительских конструкциях, где требуется экономичный режим работы. Преобразователь также может применяться в конструкциях, в которых необходимо преобразовать переменный сигнал инфранизкой частоты в импульсный для дальнейшей обработки цифровыми схемами…
Добавил: Павел (Admin) Автор: Александр Борисов Вас может заинтересовать:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|