HARRIS

Features

- High Gain Bandwidth Product (f_{T}) 10GHz
- High Power Gain Bandwidth Product 5GHz
- Current Gain (h_{FE}) . Typically 70
- Low Noise Figure (Transistor) \qquad
- Excellent h_{FE} and V_{BE} Matching
- Low Collector Leakage Current
<0.01 nA
- Pin-to-Pin Compatible to UPA101

Applications

- Balanced Mixers
- Multipliers
- Demodulators/Modulators
- Automatic Gain Control Circuits
- Phase Detectors
- Fiber Optic Signal Processing
- Wireless Communication Systems
- Wide Band Amplification Stages
- Radio and Satellite Communications
- High Performance Instrumentation

Pinout

NOTE: Q5 and Q6-2 Paralleled $3 \mu \mathrm{~m} \times 50 \mu \mathrm{~m}$ Transistors Q1, Q2, Q3, Q4 - Single $3 \mu \mathrm{~m} \times 50 \mu \mathrm{~m}$ Transistors

Absolute Maximum Ratings

$\mathrm{V}_{\text {CEO }}$, Collector to Emitter Voltage . 8.0 V
$\mathrm{V}_{\mathrm{CBO}}$, Collector to Base Voltage . 12.0 V
$\mathrm{V}_{\mathrm{EBO}}$, Emitter to Base Voltage . 5.5 V
I_{C}, Collector Current . 30 mA
$\mathrm{T}_{\text {STG }}$, Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
T_{J}, Junction Temperature (DIE) . $+175^{\circ} \mathrm{C}$
T_{J}, Junction Temperature (Plastic Package) $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s) (Lead Tips Only) $+300^{\circ} \mathrm{C}$

Thermal Information

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications at $+25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	(NOTE 1) TEST LEVEL	ALL GRADES			UNITS
			MIN	TYP	MAX	
Collector-to-Base Breakdown Voltage, $\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$, Q1 thru Q6	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	A	12	18	-	V
Collector-to-Emitter Breakdown Voltage, $\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$, Q5 and Q6	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0$	A	8	12	-	V
Emitter-to-Base Breakdown Voltage, $\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$, Q1 thru Q6	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	A	5.5	6	-	V
Collector Cutoff Current, $\mathrm{I}_{\mathrm{CBO}}$, Q1 thru Q4	$\mathrm{V}_{\mathrm{CB}}=8 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	A	-	0.1	10	nA
Emitter Cutoff Current, ${ }_{\text {EBO }}$, Q5 and Q6	$\mathrm{V}_{\mathrm{EB}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$	A	-	-	200	nA
DC Current Gain, $\mathrm{h}_{\text {FE }}$, Q1 thru Q6	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}$	A	40	70	-	
Collector-to-Base Capacitance, C_{CB} Q1 thru Q4 Q5 and Q6	$\mathrm{V}_{C B}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	C	-	0.300	-	pF
			-	0.600	-	pF
	$V_{E B}=0, f=1 \mathrm{MHz}$	B	-	0.200	-	pF
			-	0.400	-	pF
Current Gain-Bandwidth Product, f_{T} Q1 thru Q4 Q5 and Q6	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	C	-	10	-	GHz
	$\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$	C	-	10	-	GHz
	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$	C	-	5	-	GHz
	$\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	C	-	5	-	GHz
Available Gain at Minimum Noise Figure, G ${ }_{\text {NFMIN }}$, Q5 and Q6	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CE}}=3 \end{aligned}$	C	-	17.5	-	dB
		C	-	11.9	-	dB
Minimum Noise Figure, $\mathrm{NF}_{\text {MIN }}$, Q5 and Q6	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V} \end{aligned}$	C	-	1.7	-	dB
	$\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V} \quad \mathrm{f}=1.0 \mathrm{GHz}$	C	-	2.0	-	dB
50Ω Noise Figure, $\mathrm{NF}_{50 \Omega}$, Q5 and Q6	$\begin{array}{ll} I_{C}=5 \mathrm{~mA}, & f=0.5 \mathrm{GHz} \\ V_{C E}=3 \mathrm{~V} & f=1.0 \mathrm{GHz} \end{array}$	C	-	2.25	-	dB
		C	-	2.5	-	dB
DC Current Gain Matching, $\mathrm{h}_{\text {FE1 }} / \mathrm{h}_{\text {FE2 }}$, Q1 and Q2, Q3 and Q4, and Q5 and Q6	$\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	A	0.9	1.0	1.1	
Input Offset Voltage, V_{OS}, (Q1 and Q2), (Q3 and Q4), (Q5 and Q6)	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}$	A	-	1.5	5	mV
Input Offset Current, I_{C}, (Q1 and Q2), (Q3 and Q4), (Q5 and Q6)	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}$	A	-	5	25	$\mu \mathrm{A}$
Input Offset Voltage TC, $\mathrm{dV}_{\mathrm{OS}} / \mathrm{dT}$, (Q1 and Q2, Q3 and Q4, Q5 and Q6)	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}$	C	-	0.5	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Collector-to-Collector Leakage, I ${ }_{\text {TRENCH-LEAKAGE }}$	$\Delta \mathrm{V}_{\text {TEST }}=5 \mathrm{~V}$	B	-	0.01	-	nA

NOTE:

1. Test Level: A. Production Tested, B. Guaranteed Limit or Typical Based on Characterization, C. Design Typical for Information Only.

PSPICE Model for a 3 $\mu \mathrm{m} \times 50 \mu \mathrm{~m}$ Transistor

+ (IS = 1.840E-16
$+\mathrm{VAR}=4.500 \mathrm{E}+00$
+ IKF $=5.400 \mathrm{E}-02$
$+\mathrm{NC}=1.800 \mathrm{E}+00$
+ MJC $=2.400 \mathrm{E}-01$
$+\mathrm{MJE}=5.100 \mathrm{E}-01$
+ ITF = 3.500E-02
+ XCJC $=9.000 \mathrm{E}-01$
$+\mathrm{RE}=1.848 \mathrm{E}+00$
$+\mathrm{AF}=1.000 \mathrm{E}+00$)

XTI	$=3.000 \mathrm{E}+00$
BF	$=1.036 \mathrm{E}+02$
XTB	$=0.000 \mathrm{E}+00$
IKR	$=5.400 \mathrm{E}-02$
VJC	$=9.700 \mathrm{E}-01$
VJE	$=8.690 \mathrm{E}-01$
XTF	$=2.300 \mathrm{E}+00$
CJS	$=1.689 \mathrm{E}-13$
RB	$=5.007 \mathrm{E}+01$

$R B=5.007 E+01$
$E G=1.110 \mathrm{E}+00$
ISE $=1.686 \mathrm{E}-19$
$B R=1.000 \mathrm{E}+01$
$R C=1.140 \mathrm{E}+01$
FC $=5.000 \mathrm{E}-01$
TR $=4.000 \mathrm{E}-09$
VTF $=3.500 \mathrm{E}+00$
VJS $=9.982 \mathrm{E}-01$
$R B M=1.974 \mathrm{E}+00$

VAF $=7.200 \mathrm{E}+01$
$\mathrm{NE}=1.400 \mathrm{E}+00$
ISC = 1.605E-14
CJC $=3.980 \mathrm{E}-13$
$\mathrm{CJE}=2.400 \mathrm{E}-13$
TF $=10.51 \mathrm{E}-12$
$\mathrm{PTF}=0.000 \mathrm{E}+00$
MJS $=0.000 \mathrm{E}+00$
$K F=0.000 E+00$

Common Emitter S-Parameters of $3 \mu m \times 50 \mu m$ Transistor

| FREQ. (Hz) | \|S11| | PHASE(S11) | \|S12| | PHASE(S12) | \|S21| | PHASE(S21) | \|S22| | PHASE(S22) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}$ | | | | | | | | |
| $1.0 \mathrm{E}+08$ | 0.83 | -11.78 | $1.41 \mathrm{E}-02$ | 78.88 | 11.07 | 168.57 | 0.97 | -11.05 |
| $2.0 \mathrm{E}+08$ | 0.79 | -22.82 | $2.69 \mathrm{E}-02$ | 68.63 | 10.51 | 157.89 | 0.93 | -21.35 |
| $3.0 \mathrm{E}+08$ | 0.73 | -32.64 | 3.75E-02 | 59.58 | 9.75 | 148.44 | 0.86 | -30.44 |
| $4.0 \mathrm{E}+08$ | 0.67 | -41.08 | 4.57E-02 | 51.90 | 8.91 | 140.36 | 0.79 | -38.16 |
| $5.0 \mathrm{E}+08$ | 0.61 | -48.23 | 5.19E-02 | 45.50 | 8.10 | 133.56 | 0.73 | -44.59 |
| $6.0 \mathrm{E}+08$ | 0.55 | -54.27 | 5.65E-02 | 40.21 | 7.35 | 127.88 | 0.67 | -49.93 |
| $7.0 \mathrm{E}+08$ | 0.50 | -59.41 | 6.00E-02 | 35.82 | 6.69 | 123.10 | 0.62 | -54.37 |
| 8.0E+08 | 0.46 | -63.81 | 6.27E-02 | 32.15 | 6.11 | 119.04 | 0.57 | -58.10 |
| $9.0 \mathrm{E}+08$ | 0.42 | -67.63 | 6.47E-02 | 29.07 | 5.61 | 115.57 | 0.53 | -61.25 |
| $1.0 \mathrm{E}+09$ | 0.39 | -70.98 | 6.63E-02 | 26.45 | 5.17 | 112.55 | 0.50 | -63.96 |
| $1.1 \mathrm{E}+09$ | 0.36 | -73.95 | 6.75E-02 | 24.19 | 4.79 | 109.91 | 0.47 | -66.31 |
| $1.2 \mathrm{E}+09$ | 0.34 | -76.62 | 6.85E-02 | 22.24 | 4.45 | 107.57 | 0.45 | -68.37 |
| $1.3 \mathrm{E}+09$ | 0.32 | -79.04 | 6.93E-02 | 20.53 | 4.15 | 105.47 | 0.43 | -70.19 |
| $1.4 \mathrm{E}+09$ | 0.30 | -81.25 | 7.00E-02 | 19.02 | 3.89 | 103.57 | 0.41 | -71.83 |
| $1.5 \mathrm{E}+09$ | 0.28 | -83.28 | 7.05E-02 | 17.69 | 3.66 | 101.84 | 0.40 | -73.31 |
| $1.6 \mathrm{E}+09$ | 0.27 | -85.17 | 7.10E-02 | 16.49 | 3.45 | 100.26 | 0.39 | -74.66 |
| 1.7E+09 | 0.25 | -86.92 | 7.13E-02 | 15.41 | 3.27 | 98.79 | 0.38 | -75.90 |
| $1.8 \mathrm{E}+09$ | 0.24 | -88.57 | 7.17E-02 | 14.43 | 3.10 | 97.43 | 0.37 | -77.05 |
| $1.9 \mathrm{E}+09$ | 0.23 | -90.12 | 7.19E-02 | 13.54 | 2.94 | 96.15 | 0.36 | -78.12 |
| $2.0 \mathrm{E}+09$ | 0.22 | -91.59 | 7.21E-02 | 12.73 | 2.80 | 94.95 | 0.35 | -79.13 |
| 2.1E+09 | 0.21 | -92.98 | 7.23E-02 | 11.98 | 2.68 | 93.81 | 0.35 | -80.09 |
| 2.2E+09 | 0.20 | -94.30 | 7.25E-02 | 11.29 | 2.56 | 92.73 | 0.34 | -80.99 |
| $2.3 \mathrm{E}+09$ | 0.20 | -95.57 | 7.27E-02 | 10.64 | 2.45 | 91.70 | 0.34 | -81.85 |
| $2.4 \mathrm{E}+09$ | 0.19 | -96.78 | 7.28E-02 | 10.05 | 2.35 | 90.72 | 0.33 | -82.68 |
| $2.5 \mathrm{E}+09$ | 0.18 | -97.93 | 7.29E-02 | 9.49 | 2.26 | 89.78 | 0.33 | -83.47 |
| $2.6 \mathrm{E}+09$ | 0.18 | -99.05 | 7.30E-02 | 8.96 | 2.18 | 88.87 | 0.33 | -84.23 |

HFA3101
Common Emitter S-Parameters of $3 \mu m \times 50 \mu m$ Transistor (Continued)

FREQ. (Hz)	$\|\mathbf{S 1 1}\|$	PHASE(S11)	$\mid \mathbf{S 1 2 \|}$	PHASE(S12)	$\mid \mathbf{S 2 1 \|}$	PHASE(S21)	\mid S22 \mid	PHASE(S22)
$2.7 \mathrm{E}+09$	0.17	-100.12	$7.31 \mathrm{E}-02$	8.47	2.10	88.00	0.33	-84.97
$2.8 \mathrm{E}+09$	0.17	-101.15	$7.31 \mathrm{E}-02$	8.01	2.02	87.15	0.33	-85.68
$2.9 \mathrm{E}+09$	0.16	-102.15	$7.32 \mathrm{E}-02$	7.57	1.96	86.33	0.33	-86.37
$3.0 \mathrm{E}+09$	0.16	-103.11	$7.32 \mathrm{E}-02$	7.16	1.89	85.54	0.33	-87.05

$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$

$1.0 \mathrm{E}+08$	0.72	-16.43	$1.27 \mathrm{E}-02$	75.41	15.12	165.22	0.95	-14.26
$2.0 \mathrm{E}+08$	0.67	-31.26	$2.34 \mathrm{E}-02$	62.89	13.90	152.04	0.88	-26.95
$3.0 \mathrm{E}+08$	0.60	-43.76	$3.13 \mathrm{E}-02$	52.58	12.39	141.18	0.79	-37.31
$4.0 \mathrm{E}+08$	0.53	-54.00	$3.68 \mathrm{E}-02$	44.50	10.92	132.57	0.70	-45.45
$5.0 \mathrm{E}+08$	0.47	-62.38	$4.05 \mathrm{E}-02$	38.23	9.62	125.78	0.63	-51.77
$6.0 \mathrm{E}+08$	0.42	-69.35	$4.31 \mathrm{E}-02$	33.34	8.53	120.37	0.57	-56.72
$7.0 \mathrm{E}+08$	0.37	-75.26	$4.49 \mathrm{E}-02$	29.47	7.62	116.00	0.51	-60.65
$8.0 \mathrm{E}+08$	0.34	-80.36	$4.63 \mathrm{E}-02$	26.37	6.86	112.39	0.47	-63.85
$9.0 \mathrm{E}+08$	0.31	-84.84	$4.72 \mathrm{E}-02$	23.84	6.22	109.36	0.44	-66.49
$1.0 \mathrm{E}+09$	0.29	-88.83	$4.80 \mathrm{E}-02$	21.75	5.69	106.77	0.41	-68.71
$1.1 \mathrm{E}+09$	0.27	-92.44	$4.86 \mathrm{E}-02$	20.00	5.23	104.51	0.39	-70.62
$1.2 \mathrm{E}+09$	0.25	-95.73	$4.90 \mathrm{E}-02$	18.52	4.83	102.53	0.37	-72.28
$1.3 \mathrm{E}+09$	0.24	-98.75	$4.94 \mathrm{E}-02$	17.25	4.49	100.75	0.35	-73.76
$1.4 \mathrm{E}+09$	0.22	-101.55	$4.97 \mathrm{E}-02$	16.15	4.19	99.16	0.34	-75.08
$1.5 \mathrm{E}+09$	0.21	-104.15	$4.99 \mathrm{E}-02$	15.19	3.93	97.70	0.33	-76.28
$1.6 \mathrm{E}+09$	0.20	-106.57	$5.01 \mathrm{E}-02$	14.34	3.70	96.36	0.32	-77.38
$1.7 \mathrm{E}+09$	0.20	-108.85	$5.03 \mathrm{E}-02$	13.60	3.49	95.12	0.31	-78.41
$1.8 \mathrm{E}+09$	0.19	-110.98	$5.05 \mathrm{E}-02$	12.94	3.30	93.96	0.31	-79.37
$1.9 \mathrm{E}+09$	0.18	-113.00	$5.06 \mathrm{E}-02$	12.34	3.13	92.87	0.30	-80.27
$2.0 \mathrm{E}+09$	0.18	-114.90	$5.07 \mathrm{E}-02$	11.81	2.98	91.85	0.30	-81.13
$2.1 \mathrm{E}+09$	0.17	-116.69	$5.08 \mathrm{E}-02$	11.33	2.84	90.87	0.30	-81.95
$2.2 \mathrm{E}+09$	0.17	-118.39	$5.09 \mathrm{E}-02$	10.89	2.72	89.94	0.29	-82.74
$2.3 \mathrm{E}+09$	0.16	-120.01	$5.10 \mathrm{E}-02$	10.50	2.60	89.06	0.29	-83.50
$2.4 \mathrm{E}+09$	0.16	-121.54	$5.11 \mathrm{E}-02$	10.13	2.49	88.21	0.29	-84.24
$2.5 \mathrm{E}+09$	0.16	-122.99	$5.12 \mathrm{E}-02$	9.80	2.39	87.39	0.29	-84.95
$2.6 \mathrm{E}+09$	0.15	-124.37	$5.12 \mathrm{E}-02$	9.49	2.30	86.60	0.29	-85.64
$2.7 \mathrm{E}+09$	0.15	-125.69	$5.13 \mathrm{E}-02$	9.21	2.22	85.83	0.29	-86.32
$2.8 \mathrm{E}+09$	0.15	-126.94	$5.13 \mathrm{E}-02$	8.95	2.14	85.09	0.29	-86.98
$2.9 \mathrm{E}+09$	0.15	-128.14	$5.14 \mathrm{E}-02$	8.71	2.06	84.36	0.29	-87.62
$3.0 \mathrm{E}+09$	0.14	-129.27	$5.15 \mathrm{E}-02$	8.49	1.99	83.66	0.29	-88.25

Typical Performance Curves for Transistors

FIGURE 1. I_{C} vs V_{CE}

FIGURE 3. GUMMEL PLOT

FIGURE 2. H_{FE} vs I_{C}

FIGURE 4. F_{T} vs I_{C}

FIGURE 5. GAIN AND NOISE FIGURE vs FREQUENCY
NOTE: Figures 14 through 18 are only for Q5 and Q6.

Die Characteristics

PROCESS

UHF-1
DIE DIMENSIONS:
$53 \times 52 \times 14 \pm 1 \mathrm{mils}$
$1340 \mu \mathrm{~m} \times 1320 \mu \mathrm{~m} \times 355.6 \mu \mathrm{~m} \pm 25.4 \mu \mathrm{~m}$
METALLIZATION:
Type: Metal 1: $\mathrm{AlCu}(2 \%) / \mathrm{TiW}$. Type: Metal 2: $\mathrm{AlCu}(2 \%)$ Thickness: Metal 1: 8k $\AA 0.5 \mathrm{k} \AA \quad$ Thickness: Metal 2: 16k $\AA 0.8 \mathrm{k} \AA$
GLASSIVATION:
Type: Nitride
Thickness: $4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA$
DIE ATTACH:
Material: Epoxy
WORST CASE CURRENT DENSITY:
$1.3636 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$
Metallization Mask Layout

Application Information

The HFA3101 array is a very versatile RF Building block. It has been carefully laid out to improve its matching properties, bringing the distortion due to area mismatches, thermal distribution, betas and ohmic resistances to a minimum.
The cell is equivalent to two differential stages built as two "variable transconductance multipliers" in parallel, with their outputs cross coupled. This configuration is well known in the industry as a Gilbert Cell which enables a four quadrant multiplication operation.

Due to the input dynamic range restrictions for the input levels at the upper quad transistors and lower tail transistors, the HFA3101 cell has restricted use as a linear four quadrant multiplier. However, its configuration is well suited for uses where its linear response is limited to one of the inputs only, as in modulators or mixer circuit applications. Examples of these circuits are up converters, down converters, frequency doublers and frequency/phase detectors.

Although linearization is still an issue for the lower pair input, emitter degeneration can be used to improve the dynamic range and consequent linearity. The HFA3101 has the lower pair emitters brought to external pins for this purpose.
In modulators applications, the upper quad transistors are used in a switching mode where the pairs Q1/Q2 and Q3/Q4 act as non saturating high speed switches. These switches are controlled by the signal often referred as the carrier input. The signal driving the lower pair Q5/Q6 is commonly used as the modulating input. This signal can be linearly transferred to the output by either the use of low signal levels (Well below the thermal voltage of 26 mV) or by the use of emitter degeneration. The chopped waveform appearing at the output of the upper pair (Q1 to Q4) resembles a signal that is multiplied by +1 or -1 at every half cycle of the switching waveform.

FIGURE 6. TYPICAL MODULATOR SIGNALS

Figure 6 shows the typical input waveforms where the frequency of the carrier is higher than the modulating signal. The output waveform shows a typical suppressed carrier output of an up converter or an AM signal generator.
Carrier suppression capability is a property of the well known Balanced modulator in which the output must be zero when one or the other input (carrier or modulating signal) is equal to zero. however, at very high frequencies, high frequency mismatches and AC offsets are always present and the suppression capability is often degraded causing carrier and modulating feedthrough to be present.

Being a frequency translation circuit, the balanced modulator has the properties of translating the modulating frequency $\left(\omega_{\mathrm{M}}\right)$ to the carrier frequency $\left(\omega_{\mathrm{C}}\right)$, generating the two side bands $\omega_{U}=\omega_{C}+\omega_{M}$ and $\omega_{L}=\omega_{C}-\omega_{M}$. Figure 7 shows some translating schemes being used by balanced mixers.

FIGURE 7A. UP CONVERSION OR SUPPRESSED CARRIER AM

FIGURE 7B. DOWN CONVERSION

FIGURE 7C. ZERO IF OR DIRECT DOWN CONVERSION
FIGURE 7. MODULATOR FREQUENCY SPECTRUM

The use of the HFA3101 as modulators has several advantages when compared to its counterpart, the diode doublebalanced mixer, in which it is required to receive enough energy to drive the diodes into a switching mode and has also some requirements depending on the frequency range desired, of different transformers to suit specific frequency responses. The HFA3101 requires very low driving capabilities for its carrier input and its frequency response is limited by the F_{T} of the devices, the design and the layout techniques being utilized.

Up conversion uses, for UHF transmitters for example, can be performed by injecting a modulating input in the range of 45 MHz to 130 MHz that carries the information often called IF (Intermediate frequency) for up conversion (The IF signal has been previously modulated by some modulation scheme from a baseband signal of audio or digital information) and by injecting the signal of a local oscillator of a much higher frequency range from 600 MHz to 1.2 GHz into the carrier input. Using the example of a 850 MHz carrier input and a 70 MHz IF, the output spectrum will contain a upper side band of 920 MHz , a lower side band of 780 MHz and some of the carrier (850 MHz) and IF $(70 \mathrm{MHz})$ feedthrough. A Band pass filter at the output can attenuate the undesirable signals and the 920 MHz signal can be routed to a transmitter RF power amplifier.

Down conversion, as the name implies, is the process used to translate a higher frequency signal to a lower frequency range conserving the modulation information contained in the higher frequency signal. One very common typical down conversion use for example, is for superheterodyne radio receivers where a translated lower frequency often referred as intermediate frequency (IF) is used for detection or demodulation of the baseband signal. Other application uses include down conversion for special filtering using frequency translation methods.

An oscillator referred as the local oscillator (LO) drives the upper quad transistors of the cell with a frequency called ω_{C}. The lower pair is driven by the RF signal of frequency ω_{M} to be translated to a lower frequency IF. The spectrum of the IF output will contain the sum and difference of the frequencies ω_{C} and ω_{M}. Notice that the difference can become negative when the frequency of the local oscillator is lower than the incoming frequency and the signal is folded back as in Figure 7.

NOTE: The acronyms RF, IF and LO are often interchanged in the industry depending on the application of the cell as mixers or modulators. The output of the cell also contains multiples of the frequency of the signal being fed to the upper quad pair of transistors because of the switching action equivalent to a square wave multiplication. In practice, however, not only the odd multiples in the case of a symmetrical square wave but some of the even multiples will also appear at the output spectrum due to the nature of the actual switching waveform and high frequency performance. By-products of the form $\mathrm{M}^{*} \omega_{C}+\mathrm{N}^{*} \omega_{M}$ with M and N being positive or negative integers are also expected to be present at the output and their levels are carefully examined and minimized by the design. This distortion is considered one of the figures of merit for a mixer application.
The process of frequency doubling is also understood by having the same signal being fed to both modulating and carrier ports. The output frequency will be the sum of ω_{C} and ω_{M} which is equivalent to the product of the input frequency
by 2 and a zero Hz or DC frequency equivalent to the difference of ω_{C} and ω_{M}. Figure 7 also shows one technique in use today where a process of down conversion named zero IF is made by using a local oscillator with a very pure signal frequency equal to the incoming RF frequency signal that contains a baseband (audio or digital signal) modulation. Although complex, the extraction or detection of the signal is straightforward.
Another useful application of the HFA3101 is its use as a high frequency phase detector where the two signals are fed to the carrier and modulation ports and the DC information is extracted from its output. In this case, both ports are utilized in a switching mode or overdrive, such that the process of multiplication takes place in a quasi digital form (2 square waves). One application of a phase detector is frequency or phase demodulation where the FM signal is split before the modulating and carrier ports. The lower input port is always 90 degrees apart from the carrier input signal through a high Q tuned phase shift network. The network, being tuned for a precise 90 degrees shift at a nominal frequency, will set the two signals 90 degrees apart and a quiescent output DC level will be present at the output. When the input signal is frequency modulated, the phase shift of the signal coming from the network will deviate from 90 degrees proportional to the frequency deviation of the FM signal and a DC variation at the output will take place, resembling the demodulated FM signal.
The HFA3101 could also be used for quadrature detection, (I/Q demodulation), AGC control with limited range, low level multiplication to name a few other applications.

Biasing

Various biasing schemes can be employed for use with the HFA3101. Figure 8 shows the most common schemes. The biasing method is a choice of the designer when cost, thermal dependence, voltage overheads and DC balancing properties are taken into consideration.

Figure 8A shows the simplest form of biasing the HFA3101. The current source required for the lower pair is set by the voltage across the resistor $\mathrm{R}_{\text {BIAS }}$ less a V_{BE} drop of the lower transistor. To increase the overhead, collector resistors are substituted by a RF choke as the upper pair functions as a current source for AC signals. The bases of the upper and lower transistors are biased by RB1 and RB2 respectively. The voltage drop across the resistor R2 must be higher than a $V_{B E}$ with an increase sufficient to assure that the collector to base junctions of the lower pair are always reverse biased. Notice that this same voltage also sets the V_{CE} of operation of the lower pair which is important for the optimization of gain. Resistors $R_{E E}$ are nominally zero for applications where the input signals are well below 25 mV peak. Resistors R_{EE} are used to increase the linearity of the circuit upon higher level signals. The drop across $R_{\text {EE }}$ must be taken into consideration when setting the current source value.

Figure 8B depicts the use of a common resistor sharing the current through the cell which is used for temperature compensation as the lower pair V_{BE} drop at the rate of $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
Figure 8C uses a split supply.

FIGURE 8A.

FIGURE 8B.

FIGURE 8C.

FIGURE 8.

Design Example: Down Converter Mixer

Figure 9 shows an example of a low cost mixer for cellular applications.

FIGURE 9. 3V DOWN CONVERTER APPLICATION
The design flexibility of the HFA3101 is demonstrated by a low cost, and low voltage mixer application at the 900 MHz range. The choice of good quality chip components with their self resonance outside the boundaries of the application are important. The design has been optimized to accommodate
the evaluation of the same layout for various quiescent current values and lower supply voltages. The choice of R_{E} became important for the available overhead and also for maintaining an AC true impedance for high frequency signals. The value of 27Ω has been found to be the optimum minimum for the application. The input impedances of the HFA3101 base input ports are high enough to permit their termination with 50Ω resistors. Notice the AC termination by decoupling the bias circuit through good quality capacitors.

The choice of the bias has been related to the available power supply voltage with the values of $R 1, R 2$ and $R_{B I A S}$ splitting the voltages for optimum V_{CE} values. For evaluation of the cell quiescent currents, the voltage at the emitter resistor R_{E} has been recorded.

The gain of the circuit, being a function of the load and the combined emitter resistances at high frequencies have been kept to a maximum by the use of an output match network. The high output impedance of the HFA3101 permits broadband match if so desired at $50 \Omega\left(\mathrm{R}_{\mathrm{L}}=50 \Omega\right.$ to $\left.2 \mathrm{k} \Omega\right)$ as well as with tuned medium Q matching networks (L, T etc.).

Stability

The cell, by its nature, has very high gain and precautions must be taken to account for the combination of signal reflections, gain, layout and package parasitics. The rule of thumb of avoiding reflected waves must be observed. It is important to assure good matching between the mixer stage and its front end. Laboratory measurements have shown some susceptibility for oscillation at the upper quad transistors input. Any LO prefiltering has to be designed such the return loss is maintained within acceptable limits specially at high frequencies. Typical off the shelf filters exhibits very
poor return loss for signals outside the passband. It is suggested that a "pad" or a broadband resistive network be used to interface the LO port with a filter. The inclusion of a parallel 2 K resistor in the load decreases the gain slightly which improves the stability factor and also improves the distortion products (output intermodulation or 3rd order intercept). The employment of good RF techniques shall suffice the stability requirements.

Evaluation

The evaluation of the HFA3101 in a mixer configuration is presented in Figures 11 to Figure 16, Table 1 and Table 2. The layout is depicted in Figure 10.

FIGURE 10. UP/DOWN CONVERTER LAYOUT, 400\%. MATERIAL G10, 0.031

The output matching network has been designed from data taken at the output port at various test frequencies with the setup as in Table 1. S22 characterization is enough to assure the calculation of L, T or transmission line matching networks.

TABLE 1. S22 PARAMETERS FOR DOWN CONVERSION, $L_{C H}=10 \mu \mathrm{H}$

FREQUENCY	RESISTANCE	REACTANCE
10 MHz	265Ω	615Ω
45 MHz	420Ω	-735Ω
75 MHz	122Ω	-432Ω
100 MHz	67Ω	-320Ω

TABLE 2. S22 PARAMETERS FOR DOWN CONVERSION, $\mathrm{L}_{\mathrm{CH}}=10 \mu \mathrm{H}$

PARAMETER	LO LEVEL	$\mathrm{V}_{\mathbf{C C}}=3 \mathbf{V}$ $\mathrm{I}_{\text {BIAS }}=8 \mathrm{~mA}$
Power Gain	-6 dBm	8.5 dB
TOI Output	-6 dBm	11.5 dBm
NF SSB	-6 dBm	14.5 dB
Power Gain	0 dBm	8.6 dB
TOI Output	0 dBm	11 dBm
NF SSB	0 dBm	15 dB

PARAMETER	LO LEVEL	$\mathbf{V}_{\mathbf{C C}}=4 \mathrm{~V}$ $\mathbf{I}_{\text {BIAS }}=\mathbf{1 9 m A}$
Power Gain	-6 dBm	10 dB
TOI Output	-6 dBm	13 dBm
NF SSB	-6 dBm	20 dB
Power Gain	0 dBm	11 dB
TOI Output	0 dBm	12.5 dBm
NF SSB	0 dBm	24 dB

TABLE 3. TYPICAL VALUES OF S22 FOR THE OUTPUT PORT. $\mathrm{L}_{\mathrm{CH}}=390 \mathrm{nH} \mathrm{I}_{\text {BIAS }}=8 \mathrm{~mA}$ (SET UP OF FIGURE 11)

FREQUENCY	RESISTANCE	REACTANCE
300 MHz	22Ω	-115Ω
600 MHz	7.5Ω	-43Ω
900 MHz	5.2Ω	-14Ω
1.1 GHz	3.9Ω	0Ω

TABLE 4. TYPICAL VALUES OF S22. $L_{C H}=390 \mathrm{nH}, \mathrm{I}_{\text {BIAS }}=18 \mathrm{~mA}$

FREQUENCY	RESISTANCE	REACTANCE
300 MHz	23.5Ω	-110Ω
600 MHz	10.3Ω	-39Ω
900 MHz	8.7Ω	-14Ω
1.1 GHz	8Ω	0Ω

Up Converter Example

An application for a up converter as well as a frequency multiplier can be demonstrated using the same layout, with an addition of matching components. The output port S22 must be characterized for proper matching procedures and depending on the frequency desired for the output, transmission line transformations can be designed. The return loss of the input ports maintain acceptable values in excess of 1.2 GHz which can permit the evaluation of a frequency doubler to 2.4 GHz if so desired.

The addition of the resistors R_{EE} can increase considerably the dynamic range of the up converter as demonstrated at Figure 18. The evaluation results depicted in Table 5 have been obtained by a triple stub tuner as a matching network for the output due to the layout constraints. Based on the evaluation results it is clear that the cell requires a higher Bias current for overall performance.

FIGURE 11. OUTPUT PORT S22 TEST SET UP

FIGURE 13. RF PORT RETURN LOSS

FIGURE 15. TYPICAL IN BAND OUTPUT SPECTRUM, $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$

FIGURE 12. LO PORT RETURN LOSS

FIGURE 14. IF PORT RETURN LOSS, WITH MATCHING NETWORK

FIGURE 16. TYPICAL OUT OF BAND OUTPUT SPECTRUM

Design Example: Up Converter Mixer

Figure 17 shows an example of a up converter for cellular applications.

Conclusion

The HFA3101 offers the designer a number of choices and different applications as a powerful RF building block. Although isolation is degraded from the theoretical results for the cell due to the unbalanced, nondifferential input schemes being used, a number of advantages can be taken into consideration like cost, flexibility, low power and small outline when deciding for a design.

TABLE 5. TYPICAL PARAMETERS FOR AN UP CONVERTER EXAMPLE

PARAMETER	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ $\mathrm{I}_{\text {BIAS }}=8 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$ $\mathrm{I}_{\text {BIAS }}=18 \mathrm{~mA}$
Power Gain, LO $=-6 \mathrm{dBm}$	3 dB	5.5 dBm
Power Gain, LO $=0 \mathrm{dBm}$	4 dB	7.2 dB
R_{F} Isolation, LO $=0 \mathrm{dBm}$	15 dBc	22 dBc
LO Isolation, LO $=0 \mathrm{dBm}$	28 dBc	28 dBc

FIGURE 17.

$\mathrm{R}_{\mathrm{F}}=76 \mathrm{MHz}$
$\mathrm{LO}=825 \mathrm{MHz}$
FIGURE 18. TYPICAL SPECTRUM PERFORMANCE

